
Proceedings of the FOSS/GRASS Users Conference - Bangkok, Thailand, 12-14 September 2004

Architecture of the Open Format Converter

Dariusz Mrozek*, Jacek Frączek**

* Department of Computer Science, Silesian University of Technology, ul. Akademicka 16,
44-100 Gliwice, Poland, tel. +48 32 2371339, fax +48 32 2372733, e-mail

mrozek@zti.iinf.polsl.gliwice.pl
** Department of Computer Science, Silesian University of Technology, ul. Akademicka 16,

44-100 Gliwice, Poland, tel. +48 32 2371339, fax +48 32 2372733, e-mail jacekf@polsl.gliwice.pl

1 Introduction

Geographic information systems (GIS) are specialized systems that allow to visualize and
analyze earth phenomena, prepare planning strategies, predict and explain events and pro-
cesses [1, 3]. The analysis of spatial information in Earth Sciences often involves data
that is distributed in many places and stored in various formats. Many proprietary stan-
dards (and versions of these standards) have been designed to store spatial information.
That is why, the transfer of data between different systems is a very common problem.
The issues of exchange of vast amounts of spatial data, often accompanied by non-spatial
(descriptive, quantitative) information are often a source of severe difficulties. Another
type of troublesome conversions is vector-to-raster and raster-to-vector conversions des-
cribed inter alia in [2].
Many organizations and government agencies use special formats to collect data due to
their own areas of interest, e.g.: Digital Line Graphs (DLG) used the by US Geological
Survey (USGS), Topologically Integrated Geographic Encoding and Referencing Files
(TIGER) used by the US Census Bureau and Spatial Data Transfer System (SDTS) deve-
loped by the US government. Many formats have been designed to facilitate the inter-
change of information between systems [4] – Drawing Interchange Format (DXF) linked
to the CAD/CAM applications, MapInfo Data Transfer Files (MIF/MID) – a desktop ma-
pping system used by MapInfo, MicroStation Design Files (DGN) – an internal format
used by Bentley Systems Inc.’s MicroStation, and Arc Export used to transfer files bet-
ween different versions of ARC/INFO. There are also many standardization initiatives
undertaken by the international organizations for improving interoperability between GIS
systems, like: OpenGIS Geography Markup Language (GML) [6], W3C Scalable Vector
Graphics (SVG) [5], etc.
The paper presents the architecture of the Open Format Converter, which enables the con-
version of vector geospatial data to various formats. The Open Format Converter defines
the framework for multipurpose converter that is easy to extend far beyond the proposed,
implemented geospatial formats. The hereby presented architecture was used as the foun-
dation for a converter application that was developed in Department of Computer Science
of Silesian University of Technology for the Polish State Committee for Scientific Re-
search (KBN) project: Implementation of Regional Spatial Information System in Silesia
Province on order of Institute of Spatial and Cadastre Systems (ISPiK S.A.)

2 The Architecture of the Converter

The general architecture of the converter is presented on Fig.1. The main component of
the architecture is a Translation Core (TC), which consists of two modules: Geo-Core
(GC – geospatial core) and Attribute Matrix (AM).

Dariusz Mrozek, Jacek Frączek 2

Figure 1: Architecture of the Open Format Converter

Geo-Core is a universal container for vector spatial 2- and 3-dimensional objects. Its
structure was designed under the assumption of compatibility with the GML 2.0 specifi-
cation [7]. Fig.2 depicts the inheritance structure of objects intended to store spatial data:
points, lines, rectangles, polygons (with and without holes) and sets of spatial objects:
multi-points, multi-lines, multi-polygons, multi-objects, etc. The structure of more com-
pound objects incorporates simpler objects (e.g.: multi-polygons consist of polygons,
which are the set of directed linear rings, which are defined as ordered set of points).
Fig.3 shows the schema of aggregation dependences between the structures of various ob-
jects stored in GC.

GeoObject

- type: geometry
- dim: int

GeoPoint

- x: geoDecimal
- y: geoDecimal
- z: geoDecimal

GeoMultiObject

multiObject: TList*

GeoMultiGeometry

GeoMultiPoint

GeoBox

GeoMultiPolygon

GeoMultiLineString

GeoLineString

GeoLinearRing

GeoPolygon

Figure 2: The structure of inheritance of Geo-Core objects (only the most basic
members and methods are shown)

Attribute Matrix is an additional container for non-spatial data. This type of data is stored
in the form of attribute-value pairs. Attributes represent additional information linked

TRANSLATION CORE

GEO-CORE

ATTRIBUTE
MATRIX

SHP
doc

DBF

GML
doc

DB
InterfaceGeo-

DB

SHP
doc

DBF

GML
doc

SHP/DBF
Interface

Geo-
DB

Output
Config.

Conversion Configuration
(XML file)

SHP/DBF
Interface

GML
Interface

DB
Interface

GML
Interface

Input
Config.

Dariusz Mrozek, Jacek Frączek 3

with a spatial object, e.g. the name of a street, or the average depth of a water reservoir.
AM is also able to store other types of data like object’s properties and features or even
display formatting information (colours, line widths, line styles), which specifies how a
spatial object should be presented on a map. The data that is stored in AM module may
come directly from the input data sets or may be calculated on-the-fly by the configura-
tion process.
During the process of conversion, GC is intended to store one currently processed object.
The AM module is loaded with a list of attributes related to the current object. To provide
flexible means of bulk translation of many spatial objects, a special iterative procedure
must be constructed. In the simplest predefined case, it fetches data from the source (in-
put interface) and moves it to the destination (output interface). More complex implemen-
tations include the option to divide the output data into smaller packages.

GeoObject
GeoPoint

GeoMultiGeometry
GeoMultiPoint

GeoBox GeoLineString GeoLinearRing

GeoMultiGeometry
GeoPolygon

GeoMultiGeometry
GeoMultiPolygon

GeoMultiGeometry
GeoMultiLineString

Figure 3: Schema of aggregation of geospatial objects (without the
GeoMultiGeometry object which may consist of objects of any type)

The structure of the translation framework is surrounded by the extensible set of interfa-
ces responsible for accessing data stored in various formats. Input and output interfaces
are independent modules that co-operate with TC. The design based on the separation of
input and output interfaces simplifies the implementation of access modules, because it
imposes the requirement to implement only one-direction translation: from the source for-
mat to the TC format or from the TC format to the destination format.
The Translation Core therefore defines a framework, to which appropriate input/output
interfaces are connected. Input interfaces read data from files or/and from databases and
store it inside the TC modules. It is possible to write interfaces that read data from many
sources, e.g. when converting from ESRI Shape format, it is possible to read spatial infor-
mation from SHP file and non-spatial information from DBF files. Configurations of
mixed or distributed data sources are also possible. Output interfaces may write data to
files and/or databases. Fig.4 shows the basic inheritance diagram for input and output in-
terfaces.
In many cases the data conversion process requires additional configuration. This can be
accomplished by incorporating into the application the possibility to use external configu-
ration files. For that purpose the Open Format Converter uses special XML configuration
files (the structure of the configuration file will be presented in section 4).

Dariusz Mrozek, Jacek Frączek 4

GeoInterface

format: char*
dataObject: char*
count: int
geoObject: GeoObject*
- current: int

+ GeoInterface(char*)
+* ~GeoInterface()
+ getFormat() : char*
+ setDataObject(char*) : void
+ getDataObject() : char*
+ setCount(int) : void
+ getCount() : int
+ setCurrent(int) : void
+ getCurrent() : int
+ incCurrent() : int
+ setGeoObject(GeoObject*) : void
+ getGeoObject() : GeoObject*

GeoInterfaceIn

+ GeoInterfaceIn(char*)
+* readObject() : void

GeoInterfaceOut

+ GeoInterfaceOut(char*)
+* writeObject() : void

Figure 4: The Schema of inheritance for access interfaces to objects without
non-spatial data

The main advantage of the advanced configuration is the possibility to influence and
change the behaviour of the basic conversion path. Appropriate configuration can modify
activities carried out by input and/or output interfaces. For every single type of conver-
sion (e.g., SHP/DBF � GML) one configuration file should exist.

3 Conversion course and configuration process

Specification of calling parameters is the simplest way of controlling the behaviour of the
converter application. It is sufficient only in the most straightforward situations, when no
specific transformations are needed (when objects are transferred to the destination with-
out any additional changes). However, non-spatial data often has to be handled in a speci-
fic way – it is frequently a subject to various transformations or even special actions exe-
cuted upon its attributes. A flexible way of controlling the converter activities is the use
of external configuration files.

3.1 Simple conversion

The so-called, simple conversion process (Fig.5) may be controlled by the use of parame-
ters.

Figure 5: Simple conversion process

Conversion is executed according to a very simple principle – appropriate interfaces are
defined, the data is read from the source set and written in the destination format. No
transformations are done to the data. In this case, Input Interface is responsible for inter-
preting and embedding spatial data and non-spatial attributes in the GC/AM structure.
Output Interface is responsible just for reading information from GC/AM and writing it in
the destination format.

Input
Interface

Transl.
Core

Output
Interface

Source
Set

Destin.
Set

Dariusz Mrozek, Jacek Frączek 5

3.2 Advanced configuration of the input interface

The configuration of the converter allows to specify various kinds of transformations that
should be carried on the non-spatial data during the conversion process. The transforma-
tions include:

• Attributes’ type conversion (e.g., boolean False/True to numeric 0/1).
• Trimming, truncating, and rounding data.
• Transforming characters to uppercase/lowercase.
• National language character-set conversions.
• Setting values for attributes from the source data that have missing values or

should have assigned specific constant values in the output data.
• Other transformation formulae for source/destination values.

Fig.6 shows the conversion process with special configuration of the input interface. In
the example, some additional information has to be acquired from the other data set refe-
renced from the main data set.

Figure 6: Configuration of the input interface

A shape file (SHP) containing geometry and a corresponding attribute set (DBF1) play
the role of the principle source data set. Additional attribute data set DBF2 plays the role
of the supplementary source linked to the main source with appropriate join condition.
Join operation is performed with the use of an id field (e.g., riverID) from DBF1 which
references a record in the lookup table DBF2 (e.g., identified by DBF2.riverID).
DBF1.riverID is a foreign key to the DBF2.riverID. The system allows to retrieve the va-
lue of any field in additional data set (e.g., riverName, riverLength).
This advanced type of conversion requires the operator to prepare a special configuration,
which specifies:

• The supplementary source (in the case of files: path and name of the file).
• Fields that are involved in the join condition.
• Name of the additional field, which value has to be retrieved from the

supplementary data set.

3.3 Advanced configuration of the output interface

Configuration of the output interface is associated with retrieving data from TC and
writing it in the specified destination format. In this case – before data is loaded into the
output set – additional changes, transformations, corrections and references to other data
sources may take place. Fig.7 shows such an example situation.

Input
Interface

Transl.
Core

Output
Interface

Source
Destin.

Set

DBF1

SHP

DBF2 Input
Config.
(XML)

Dariusz Mrozek, Jacek Frączek 6

Figure 7: Configuration of the output interface

In the presented example, spatial and non-spatial data stored in the TC module is to be in-
serted into a destination system. The information stored in a configuration file controls
the way the output interface runs. In the case, when the destination system is a database,
additional configuration specifies:

• Information required to connect to the database (e.g., connect string).
• Names of tables, to which data should be inserted.
• Other features of the destination system (e.g., how often commit operation should

be submitted, job scheduling, etc.).
The Additional Set on Fig. 7 holds additional display information (e.g. colour, line style,
etc.) that should be incorporated into the output data. In this case, content of the configu-
ration file must contain information specific for the process of reading additional referen-
ced attributes (it is analogous to the case of the advanced configuration of the input inter-
face).

4 Structure of the configuration file

The flexible usage of input and output interfaces is based on the application of advanced
configuration options. The use of configuration files helps avoid recompilation of the
application modules by storing the changing parameters of the conversion process outside
the interfaces’ code.
The Open Format Converter uses configuration files in XML format. The example con-
tents of the file for the shape to GML conversion process is presented below:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration>
 <General>
 <SourceFormat>Shape</SourceFormat>
 <DestinationFormat>OGC-GML</DestinationFormat>
 <TransferGeometry>true</TransferGeometry>
 <TransferAttributes>true</TransferAttributes>
 <GeoType>POINT</GeoType>
 </General>
 <Input>
 <Dictionaries>
 <Dictionary name="CITIES" type="DBF" file=".\rivers.dbf"/>
 </Dictionaries>
 <Attribute dictionary="CITIES">
 <SrsAttName>Name</SrsAttName>
 <DstAttName>City</DstAttName>
 <JoinCondition>MAIN.cityID = CITIES.ID</JoinCondition>
 </Attribute>
 </Input>
 <Output>
 <PartOfDoc parent="RefineryLayer">HydroMap.xml</PartOfDoc>
 <ExplicitCoords>true</ExplicitCoords>
 <SRSName>UTM Zone 10</SRSName>
 <RecNumber>10000</RecNumber>
 <Element name="WaterRefinery">
 <Attribute>
 <SrcAttName>Bio</SrsAttName>

Input
Interface

Transl.
Core

Output
Interface Destin.

Sys

Output
Config.
(XML)

Source
Set

Addit.
Set

Dariusz Mrozek, Jacek Frączek 7

<DstAttName>Biological</DstAttName>
 </Attribute>
 <Attribute>
 <SrsAttName>Chem</SrsAttName>
 <DstAttName>Chemical</DstAttName>
 <Value>True</Value>
 </Attribute>
 </Element>
 </Output>
</Configuration>

There are three main sections inside the Configuration root element: General, In-
put and Output – each one responsible for specific part of the conversion process. The
General section is obligatory. It contains common information about the process, like:
source format (SourceFormat), destination format (DesinationFormat) and optional
geometry type (GeoType). In the presented example, there are also two optional flags:
TransferGeometry and TransferAttributes, which specify whether the geometry
and attribute data should be transferred from source to destination set.
The Input section is optional and controls the input interface. In the presented example,
one supplementary dictionary is declared in order to get the values of additional attributes
that are not available in the main attribute set. The value of the Name field from the
CITIES dictionary (specified in the SrcAttName tag) is retrieved and put inside the AM
module as the value of the City attribute (specified in the DstAttName tag). Join condi-
tion between the main attribute set and secondary CITIES attribute set (MAIN.cityID =
CITIES.ID) is defined in order to point to the appropriate record in the secondary set
(MAIN is a predefined dictionary and denotes the main attribute set). In this situation, two
operations are performed on the additional attribute Name. First, the attribute is retrieved
from the secondary set, and then its name is changed.
The Output section is optional and controls the output interface. The example configura-
tion file contains instructions how geometry coordinates should be presented in the desti-
nation set. The ExpicitCoords flag decides whether the coordinates are stored in shor-
ter <gml:coordinates> or longer format <gml:coord>. The Element tag describes the
name of the generated element in the destination XML document and attributes associa-
ted with the element. The PartOfDoc tag denotes that generated GML document will be
a part of a bigger GML document (HydroMap.xml). The parent attribute of the Part-
OfDoc tag indicates the tag in the output XML document (RefineryLayer), where the
data should be placed. The RecNumber tag manages the division of the output document
into smaller parts and specifies the number of records in the single part of the output file.
SRSName contains name of the Spatial Reference System. The Attribute tags inside
the Element tag describe transformations that are executed on attributes during the trans-
fer of data from AM module into the specified GML element of the destination docu-
ment. Attributes that have no dictionary specified, by default denote attributes from MAIN
dictionary.

5 Summary

The paper presents the architecture of the Open Format Converter, which defines an ex-
tensible framework for applications used to transform vector spatial and non-spatial data
into required output formats. The architecture uses object-oriented technology to store da-
ta in universal internal container and the set of input/output interfaces used to access and
write data in various standards. The configuration capabilities allow to control the beha-
viour of the process and to define additional transformations for non-spatial attributes.

Dariusz Mrozek, Jacek Frączek 8

References

[1] Rigaux Ph., Schol M., Voisard A.: Spatial Databases. With Application to

GIS. Academic Press, 2002.

[2] Healey R., Dowers S., Gittings B., Mineter M.: Parallel Processing
Algorithms for GIS. Taylor & Francis, 1998.

[3] Berry J.K.: Spatial Reasoning For Effective GIS. GIS World, Inc., 1997.

[4] The GeoCommunity, http://www.geocomm.com/.

[5] Scalable Vector Graphics (SVG), Version 1.2,
http://www.w3.org/TR/2004/WD-SVG12-20040510.

[6] OpenGIS, Geography Markup Language (GML) Implementation
Specification, Version 3.0, http://www.opengis.org/specs.

[7] Geography Markup Language (GML) 2.0. OGC Recommendation Paper,
2001.

	Architecture of the Open Format Converter
	1 Introduction
	2 The Architecture of the Converter
	3 Conversion course and configuration process
	3.1 Simple conversion
	3.2 Advanced configuration of the input interface
	3.3 Advanced configuration of the output interface
	4 Structure of the configuration file
	5 Summary
	References

